martes, 27 de mayo de 2014

Lección 34 Aparato Respiratorio

Lección 34 Aparato Respiratorio
El sistema respiratorio está formado por un conjunto de órganos que tiene como principal función llevar el oxígeno atmosférico hacia las células del organismo y eliminar del cuerpo el dióxido de carbono producido por el metabolismo celular.  Los órganos que componen el sistema respiratorio son cavidades nasales, la faringe, la laringe, la tráquea, los bronquios, los bronquiolos y los dos pulmones. Los pulmones son los órganos centrales del sistema respiratorio donde se realiza el intercambio gaseoso. El resto de las estructuras, llamadas vías aéreas o respiratorias, actúan como conductos para que pueda circular el aire inspirado y espirado hacia y desde los pulmones, respectivamente. Aunque la cavidad bucal permite la entrada de aire a las vías respiratorias no forma parte el sistema respiratorio.
La parte interna de las vías respiratorias está cubierta por:
- Una capa de tejido epitelial, cuyas células muy unidas entre sí protegen de lesiones e infecciones.
- Una mucosa respiratoria, responsable de mantener las vías bien húmedas y una temperatura adecuada.
La superficie de la mucosa respiratoria posee dos tipos de células:
- Células mucosas: elaboran y segregan moco hacia la entrada de las vías respiratorias.
- Células ciliadas: poseen cilios en constante movimiento con el fin de desalojar el moco y las partículas extrañas que se fijan en la mucosa respiratoria. 
CAVIDADES NASALES
Son dos estructuras, derecha e izquierda ubicadas por encima de la cavidad bucal. Están separadas entre sí por un tabique nasal de tejido cartilaginoso. En la parte anterior de cada cavidad se ubican las narinas, orificios de entrada del sistema respiratorio. La parte posterior se comunica con la faringe a través de las coanas.
El piso de las cavidades nasales limita con el paladar duro y con el paladar blando, que las separa de la cavidad bucal. Están recubiertas por una mucosa que envuelve a los cornetes, serie de huesos enrollados en número de tres (superior, medio e inferior). Dicha mucosa calienta el aire inspirado.
Las cavidades nasales presentan pelos que actúan como filtro, evitando que el polvo y las partículas del aire lleguen a los pulmones. En la parte dorsal de las cavidades hay terminaciones nerviosas donde asienta el sentido del olfato.
Las cavidades nasales tienen las siguientes funciones:
-Filtrar de impurezas el aire inspirado
-Humedecer y calentar el aire que ingresa por la inspiración 
-Permitir el sentido del olfato
-Participar en el habla
FARINGE
Órgano tubular y musculoso que se ubica en el cuello. Comunica la cavidad nasal con la laringe y la boca con el esófago. Por la faringe pasan los alimentos y el aire que va desde y hacia los pulmones, por lo que es un órgano que pertenece a los sistemas digestivo y respiratorio. Las partes de la faringe son:
-Nasofaringe: porción superior que se ubica detrás de la cavidad nasal. Se conecta con los oídos a través de las trompas de Eustaquio
-Bucofaringe: porción media que se comunica con la boca a través del istmo de las fauces.
-Laringofaringe: es la porción inferior que rodea a la laringe hasta la entrada al esófago. La epiglotis marca el límite entre la bucofaringe y la laringofaringe.
Las funciones de la faringe son:
-Deglución
-Respiración
-Fonación
-Audición

LARINGE
Órgano tubular, de estructura músculo - cartilaginosa, que comunica la faringe con la tráquea. El diámetro vertical mide 5-7 centímetros. Se ubica por encima de la tráquea. El hueso hioides actúa como aparato suspensorio.
La laringe posee nueve cartílagos: aritenoides, de Santorini y de Wrisberg (pares) y los cartílagos tiroides, cricoides y epiglótico (impares). En la deglución, el cartílago epiglótico (epiglotis) desciende para bloquear la entrada a la laringe y obligar al bolo alimenticio a pasar hacia el esófago.
La laringe contiene las cuerdas vocales, estructuras fundamentales para permitir la fonación.
De acuerdo a la posición que adopten las cuerdas vocales se establecen dos características:
-Posición de respiración: las cuerdas vocales se abren hacia los lados y el aire circula libremente.


-Posición de fonación: las cuerdas vocales se acercan y el aire choca contra ellas.

Las funciones de la laringe son:
-Respiratoria
-Deglutoria: se eleva la laringe y el bolo alimenticio pasa hacia el esófago.
-Protectora: se cierra la epiglotis evitando el paso de sustancias a la tráquea.
-Tusígena y expectorante (función protectora)
-Fonética

TRÁQUEA
Es un órgano con forma de tubo, de estructura cartilaginosa, que comunica la laringe con los bronquios. Está formada por numerosos anillos de cartílago conectados entre sí por fibras musculares y tejido conectivo. La función de los anillos es reforzar a la tráquea para evitar que se colapse durante la respiración. Las medidas aproximadas en humanos son de 10-11 centímetros de longitud y 2 a 2,5 centímetros de diámetro. La tráquea posee unos 20-22 cartílagos con forma de herradura. La mitad de los anillos se ubican a la altura del cuello, mientras que la otra mitad se aloja en la cavidad torácica, a la altura del esternón. La tráquea se bifurca cerca del corazón, dando lugar a dos bronquios primarios. 
La forma tubular de la tráquea no es cilíndrica, ya que sufre un aplanamiento en su parte dorsal donde toma contacto con el esófago.
La tráquea está tapizada por una mucosa con epitelio cilíndrico y ciliado que segrega mucus. El moco ayuda a limpiar las vías del sistema, gracias al movimiento que los cilios ejercen hacia la faringe. El moco procedente de la tráquea y de las cavidades nasales llega a la faringe y es expectorado o deglutido. La tráquea tiene la función de llevar el aire desde la laringe hacia los bronquios.

BRONQUIOS
Son dos estructuras de forma tubular y consistencia fibrocartilaginosa, que se forman tras la bifurcación de la tráquea. Igual que la tráquea, los bronquios tienen una capa muscular y una mucosa revestida por epitelio cilíndrico ciliado. El bronquio derecho mide 2-3 cm y tiene entre 6 y 8 cartílagos. El bronquio izquierdo mide de 3 a 5 cm y posee entre 10 y 12 cartílagos. 
Sección transversal de un bronquio
Los bronquios penetran en cada pulmón y van reduciendo su diámetro. A medida que progresan van perdiendo los cartílagos, se adelgaza la capa muscular y se forman finos bronquios secundarios y terciarios. La función de los bronquios es conducir el aire inspirado de la tráquea hacia los alvéolos pulmonares.
 
BRONQUIOLOS
Son pequeñas estructuras tubulares producto de la división de los bronquios. Se ubican en la parte media de cada pulmón y carecen de cartílagos. Los bronquiolos están formados por una delgada pared de músculo liso y células epiteliales cúbicas sin cilios. Penetran en los lobulillos del pulmón donde se dividen en bronquiolos terminales y bronquiolos respiratorios. 
ALVÉOLOS PULMONARES
Los bronquiolos respiratorios se continúan con los conductos alveolares y estos con los sacos alveolares. Los sacos alveolares contienen muchas estructuras diminutas con forma de saco llamadas alvéolos pulmonares. El bronquiolo respiratorio, el conducto alveolar, el saco alveolar y los alvéolos constituyen la unidad respiratoria. 
Esquema de la unidad respiratoria
En los alvéolos del pulmón se lleva a cabo el intercambio de oxígeno y de dióxido de carbono, proceso que se denomina hematosis. La pared de los alvéolos se reduce a una muy delgada membrana de 4 micras de grosor. Uno de sus lados contacta con el aire que llega de los bronquiolos. El otro lado se relaciona con la red capilar, donde los glóbulos rojos realizan la hematosis. 
Dentro de los alvéolos existe un tipo de células que elaboran una sustancia que recubre el epitelio en su parte interna. Dicha sustancia es elsurfactante, cuya misión es evitar que el alvéolo se colapse luego de una espiración al reducir la tensión superficial del alvéolo. El surfactante pulmonar produce una mejor oxigenación, un aumento de la expansión alveolar y una mayor capacidad residual del pulmón. El surfactante está compuesto por un 90% de fosfolípidos y 10% de proteínas. 

PULMONES
Órganos huecos, situados dentro de la cavidad torácica, a ambos lados del corazón y protegidos por las costillas. Posee tres caras: costal, mediastínica y diafragmática.

Los pulmones están separados entre sí por el mediastino. El mediastino es una cavidad virtual que divide el pecho en dos partes. Se ubica detrás del esternón, delante de la columna vertebral y entre ambas pleuras derecha e izquierda. Por debajo limita con el diafragma y por arriba con el istmo cervicotorácico. 

-Pulmón derecho: es algo mayor que el izquierdo y pesa alrededor de 600 gramos. Presenta tres lóbulos: superior, medio e inferior, separados por cisuras.
-Pulmón izquierdo: pesa cerca de 500 gramos y tiene dos lóbulos, uno superior y otro inferior.  Cada pulmón contiene alrededor de 300 millones de alvéolos. La principal función de los pulmones es establecer el intercambio gaseoso con la sangre. Es por esa razón que los alvéolos están en estrecho contacto con los capilares. Además, actúan como un filtro externo ante la contaminación del aire, mediante sus células mucociliares y macrófagos alveolares. 
CIRCULACIÓN PULMONAR
Los pulmones son órganos que reciben dos tipos de irrigación sanguínea.
-Recibe sangre de las arterias pulmonares que parten del ventrículo derecho (circulación menor) para su oxigenación.
-Es irrigado con sangre oxigenada por las arterias bronquiales, procedentes de la arteria aorta (circulación mayor).
Las principales funciones del sistema respiratorio son:
-Realizar el intercambio gaseoso entre los alvéolos y la sangre 
-Acondicionar el aire que arriba a los pulmones 
-Regular el pH de la sangre
-Actuar como vía de eliminación de distintas sustancias
-Permitir la fonación
MECÁNICA RESPIRATORIA
El intercambio de oxígeno y de dióxido de carbono (hematosis) tiene lugar entre los alvéolos y los capilares del pulmón a través de la membrana alveolocapilar, que es semipermeable. Con la inspiración, el aire ingresa a los pulmones porque la presión dentro de ellos es menor a la presión atmosférica. 
-Inspiración
Se contraen el diafragma, los músculos intercostales externos, los serratos anteriores y los pectorales. La cavidad torácica se expande. Los pulmones se dilatan al entrar aire oxigenado. Tras la inspiración, el oxígeno llega a los alvéolos y pasa a los capilares arteriales.
-Espiración
Intervienen los músculos intercostales internos, los oblicuos abdominales y el recto abdominal. El diafragma, los músculos pectorales y los intercostales externos se relajan. La cavidad torácica se reduce en volumen. Los pulmones se contraen al salir aire desoxigenado. Con la espiración el aire sale de los pulmones porque la presión en los alvéolos es mayor que la atmosférica. 

La inspiración es un proceso activo, ya que necesita del trabajo muscular. Antes de cada inspiración, la presión intrapulmonar es casi igual a la existente en la atmósfera. La espiración es un fenómeno pasivo, que solo depende de la elasticidad de los pulmones. Antes de cada espiración, la presión intrapulmonar es mayor a la atmosférica.

HEMATOSIS
Es el proceso por el cual el oxígeno del aire inspirado pasa a la sangre y se intercambia con el dióxido de carbono que es impulsado de la sangre a los alvéolos para ser eliminado con la espiración al exterior. La hematosis se rige cumpliendo con la ley de los gases, ya que la difusión se produce desde un lugar de mayor a otro de menor concentración. La hematosis se produce a nivel de los alvéolos (respiración externa) y de las células de todos los tejidos (respiración interna o celular).

El aire inspirado, con alta carga de oxígeno, atraviesa por difusión simple la membrana alveolocapilar y llega a la sangre, que tiene menos concentración. El pasaje de oxígeno desde los alvéolos a los capilares arteriales es favorecido por la presencia de la hemoglobina presente en los glóbulos rojos. Cuando la sangre abandona los pulmones transporta el 97% de oxígeno en forma de oxihemoglobina, quedando un 3% disuelto en el plasma. Una molécula de hemoglobina se une a cuatro de oxígeno en forma reversible.

El dióxido de carbono formado por el metabolismo celular es volcado a la sangre venosa y captado por los glóbulos rojos. Una parte se transforma en ácido carbónico, que rápidamente se ioniza formando bicarbonato y protones. El resto es llevado hacia los pulmones en forma de carbohemoglobina. La sangre que llega a los pulmones tiene más concentración de dióxido de carbono que el aire inspirado, con lo cual pasa a los alvéolos y es eliminado del organismo con la espiración.
FRECUENCIA RESPIRATORIA
Es la cantidad de veces que se realiza un ciclo respiratorio por minuto, es decir, cuantas inspiraciones seguidas de espiraciones se producen en ese lapso de tiempo. En condiciones normales los humanos tienen una frecuencia respiratoria de 12 a 18 ciclos por minuto, valor que depende de la edad y del estado físico. 

VOLÚMENES RESPIRATORIOS
- Volumen corriente: es la cantidad de aire que ingresa y egresa en cada movimiento respiratorio. En una persona adulta equivale a medio litro. 
- Volumen de reserva espiratorio:luego de una espiración normal, es la cantidad de aire que se puede eliminar tras una espiración forzada. En humanos es aproximadamente 2 litros.
- Volumen residual: cantidad de aire que queda en los pulmones luego de una espiración forzada. En una persona adulta equivale a un litro.
- Volumen de reserva inspiratorio:luego de una inspiración normal, cantidad de aire que puede ingresar a los pulmones tras una inspiración forzada. El valor promedio es de 2 litros. 
RESPIRACIÓN FETAL
El intercambio de oxígeno y de dióxido de carbono entre la sangre fetal y la sangre materna se realiza a través de la placenta. Los gases se movilizan por difusión simple desde un lugar de mayor concentración a otro de menor concentración (ley de gases). La placenta controla las presiones parciales de los gases en la sangre del feto, para impedir que el centro respiratorio del mismo se estimule ante la carencia o aumento de alguno de ellos.
RESPIRACIÓN DEL RECIÉN NACIDO
A medida que la gestación avanza disminuye la actividad de la placenta, con lo cual el aporte de oxígeno se reduce paulatinamente hasta cesar por completo al momento del nacimiento. En ese instante aumenta la presión parcial de dióxido de carbono, con lo cual se estimula por primera vez el centro respiratorio del neonato que responde con una inspiración. Los pulmones se insuflan, se dilata el tórax y se crea una presión negativa intrapleural que irá en aumento al desarrollarse la cavidad torácica, hecho que sucede más rápido que el propio crecimiento de los pulmones. A los siete meses de gestación, el sistema respiratorio del feto posee todas las estructuras necesarias capaces de iniciar la respiración ante un eventual parto prematuro.
TOS
Es un mecanismo de acción voluntaria o involuntaria donde se expulsa de manera violenta el aire contenido en los pulmones. Tiene por finalidad mantener despejadas las vías respiratorias. No obstante, es un signo de enfermedad del sistema respiratorio (faringitis, laringitis, bronquitis, neumonía, gripe, tuberculosis, etc.) y de causas extra-respiratorias (trastornos cardíacos, tumores de esófago, etc.).
El mecanismo de la tos se inicia con una inspiración profunda y cierre de la glotis (porción más estrecha de la luz laríngea). Se producen contracciones de los músculos torácicos, hecho que provoca aumento de presión dentro de los pulmones respecto de la atmósfera. La glotis se abre de repente y se produce un típico sonido a raíz de la brusca salida de aire.
EXPECTORACIÓN
Es el desprendimiento y expulsión, a través de la tos, de las flemas y secreciones que se depositan en las vías respiratorias. El color del contenido expectorado resulta ser de importancia clínica. Cuando es blanquecino es de tipo mucoso, verde amarillento mucopurulento, verdoso purulento y rojizo implica expectoración hemorrágica.
ESTORNUDO
Es un acto reflejo debido a numerosos factores que provocan irritación de la mucosa nasal. El estornudo se inicia con una inspiración manifiesta seguida por una violenta y sonora expulsión de aire de los pulmones. Se acompaña con un movimiento hacia delante de la cabeza. Dentro de los factores que desencadenan la necesidad de estornudar están los estados alérgicos, los ambientes con mucho polvo, el polen de las flores, el pelo de algunos animales, los productos tóxicos como el amoníaco y determinadas enfermedades infecciosas como los resfríos y los estados gripales.
BOSTEZO
Es un acto no controlado donde ingresa aire por la boca hacia los pulmones a través de una amplia separación de los huesos maxilares, seguida de la eliminación de una cantidad algo menor de aire por la misma vía con cierre de la cavidad bucal. En general, se acompaña de un leve lagrimeo. Duran alrededor de tres segundos y suelen ser contagiosos entre humanos.
Las causas del bostezo no son aún del todo claras. Entre las numerosas hipótesis se cree que sirve para regular la temperatura del cuerpo, como también señalar determinados comportamientos anímicos en especies animales gregarias, donde el bostezo indicaría cansancio al grupo familiar, sincronizando así los patrones del sueño. En general, se acepta que el bostezo es un indicador de aburrimiento, agotamiento, estrés y rechazo.
HIPO
Son contracciones espasmódicas e involuntarias del diafragma, debido a la irritación del nervio frénico. Este nervio es el responsable de la contracción y relajación del músculo diafragmático. El hipo o singulto produce una súbita inspiración y cierre de la glotis, con un sonido característico. Las causas de esta manifestación son diversas, entre ellas la ingestión muy rápida de alimentos, de bebidas gaseosas y muy frías, consumo elevado de alcohol, tabaquismo, etc. Otras causas se deben al estrés, la ansiedad, por una distensión gástrica y durante el embarazo.

La mayoría de las veces el hipo es pasajero. Una forma de detenerlo es efectuando una inspiración profunda y reteniendo el aire en los pulmones el mayor tiempo posible. Ello produce aumento del dióxido de carbono en la sangre inhibiendo las contracciones.
Si el hipo se manifiesta de manera persistente puede que sea uno de los signos de una enfermedad severa, con lo cual la consulta médica es imperiosa. 

Para bajar la lección pulsa el siguiente enlace:

Lección 33 El Corazón y el Sistema Circulatorio

Lección 33   El Corazón y el Sistema Circulatorio

El corazón y el sistema circulatorio (también llamado aparato cardiovascular) forman la red que envía sangre a los tejidos del organismo. Con cada latido del corazón, la sangre es enviada a todo el organismo, transportando oxígeno y nutrientes a todas las células.
Cada día, 7.571 litros de sangre viajan a lo largo de aproximadamente 96.560 kilómetros de vasos sanguíneos que se ramifican y entrecruzan, enlazando las células de nuestros órganos y partes del cuerpo. Desde el laborioso corazón hasta nuestras arterias más gruesas y los capilares tan finos que sólo pueden verse a través de un microscopio, el aparato cardiovascular es la línea vital de nuestro cuerpo.

¿En qué consiste el aparato circulatorio?
El aparato circulatorio está compuesto por el corazón y los vasos sanguíneos, que incluyen arterias, venas y capilares. Nuestro organismo tiene dos aparatos circulatorios: La circulación pulmonar es un circuito corto del corazón a los pulmones y viceversa y la circulación sistémica (el sistema al que solemos considerar el aparato circulatorio), que envía sangre del corazón a todas las demás partes de nuestro cuerpo y viceversa.

El corazón es el órgano clave del aparato circulatorio. La función principal de esta bomba muscular hueca es impulsar la sangre a través del cuerpo. Suele latir de 60 a 100 veces por minuto, pero puede latir mucho más rápido cuando es necesario. Late unas 100.000 veces por día, más de 30 millones de veces por año y unas 2,5 mil millones de veces en una vida de 70 años.
El corazón recibe mensajes del cuerpo que le informa cuándo bombear más o menos sangre, dependiendo de las necesidades de una persona. Cuando estamos durmiendo, bombea lo suficiente para proporcionar las menores cantidades de oxígeno requeridas por nuestro cuerpo en reposo. Cuando estamos realizando ejercicios o tenemos miedo, el corazón bombea más rápido para obtener más oxígeno para nuestros cuerpos.

El corazón tiene cuatro cámaras que están rodeadas por paredes musculares gruesas. Se encuentra entre los pulmones y apenas a la izquierda de la mitad de la cavidad torácica. La parte inferior del corazón se divide en dos cámaras, denominadas ventrículos derecho e izquierdo, que expulsan la sangre del corazón. Una pared conocida como tabique intraventricular, divide los ventrículos.


La parte superior del corazón está formada por las otras dos cámaras del corazón, denominadasaurículas derecha e izquierda. Las aurículas derecha e izquierda reciben la sangre que ingresa al corazón. Una pared denominada tabique interauricular, divide las aurículas que están separadas de los ventrículos por las válvulas aurículo-ventriculares

La válvula tricúspide separa la aurícula derecha del ventrículo derecho y laválvula mitral separa la aurícula izquierda del ventrículo izquierdo.

Otras dos válvulas cardíacas separan los ventrículos y los grandes vasos sanguíneos que transportan la sangre que sale del corazón. Estas válvulas se denominan válvula pulmonar, que separa el ventrículo derecho de la arteria pulmonar que lleva a los pulmones, y válvula aórtica, que separa el ventrículo izquierdo de la aorta, el vaso sanguíneo más grande del cuerpo.

Los vasos sanguíneos que transportan la sangre fuera del corazón son las arterias. Son los vasos sanguíneos más gruesos, con paredes musculares que se contraen para mantener el movimiento de la sangre del corazón a través de todo el cuerpo. En la circulación sistémica, la sangre rica en oxígeno es expulsada del corazón a la aorta. Esta arteria enorme se curva hacia arriba y hacia atrás a partir del ventrículo izquierdo, se dirige luego hacia abajo por delante de la columna vertebral hasta el abdomen. Dos arterias coronarias se ramifican en el inicio de la aorta y se dividen en una red de arterias más pequeñas que proporcionan oxígeno y nutrición a los músculos del corazón.
A diferencia de la aorta, la otra gran arteria del cuerpo, la arteria pulmonar, transporta sangre con poco oxígeno. Desde el ventrículo derecho, la arteria pulmonar se divide en ramas derecha e izquierda, en su camino a los pulmones, donde la sangre toma oxígeno.

Las paredes arteriales tienen tres planos:
  • El endotelio es el plano interior y proporciona un revestimiento uniforme para que la sangre fluya a medida que se desplaza por la arteria.
  • La media es la parte central de la arteria, formada por un plano de tejido muscular y elástico.
  • La adventicia es la cubierta resistente que protege el exterior de la arteria.
A medida que se alejan del corazón, las arterias se ramifican en arteriolas, que son más pequeñas y menos flexibles.
Los vasos sanguíneos que transportan la sangre de regreso al corazón son las venas. No son tan musculares como las arterias, pero contienen válvulas que impiden que la sangre se desplace hacia atrás. Las venas tienen los mismos tres planos que las arterias, pero son más delgadas y menos flexibles. Las dos venas más grandes son las venas cavas superior e inferior. Los términos superior e inferior no significan que una vena sea mejor que la otra, sino que se ubican por encima (superior) y por debajo (inferior) del corazón.

Una red de diminutos capilares conecta las arterias y venas. Aunque son diminutos, los capilares constituyen una de las partes más importantes del aparato circulatorio, porque a través de ellos se envían los nutrientes y oxígeno a las células. Además, los productos de deshecho como el dióxido de carbono también son eliminados por los capilares.

¿Qué hacen el corazón y el aparato circulatorio?
El aparato circulatorio trabaja en estrecha cooperación con otros aparatos y sistemas de nuestro cuerpo. Proporciona oxígeno y nutrientes a nuestro organismo, trabajando con el aparato respiratorio. Al mismo tiempo, el aparato circulatorio ayuda a transportar desechos y dióxido de carbono fuera del organismo. Las hormonas, producidas por el sistema endocrino, también son transportadas a través de la sangre en nuestro aparato circulatorio. Cumpliendo con su función como mensajeros químicos del organismo, las hormonas transfieren información e instrucciones de un grupo de células a otro.

¿Alguna vez te preguntaste sobre el proceso que esconde el latido de tu corazón? Esto es lo que sucede. Un latido cardíaco completo constituye un ciclo cardíaco, que está formado por dos fases. Cuando el corazón late, los ventrículos se contraen (a esto se lo denomina sístole), enviando sangre a la circulación pulmonar y sistémica. Son los sonidos "lub-dub" que se oyen cuando se escucha el corazón de una persona. Luego los ventrículos se relajan (se lo denomina diástole) y se llenan con sangre que viene de las aurículas.

Un sistema eléctrico exclusivo en el corazón hace que lata con su ritmo regular. El nódulo sinusal, una zona pequeña de tejido en la pared de la aurícula derecha, envía una señal eléctrica para comenzar la contracción del músculo cardíaco. Estos impulsos eléctricos hacen que primero se contraigan las aurículas y luego pasan al nódulo aurículoventricular o AV, que actúa como una clase de estación de retransmisión. Desde aquí, la señal eléctrica viaja a través de los ventrículos derecho e izquierdo, haciendo que se contraigan y expulsen la sangre hacia las grandes arterias.

En la circulación sistémica, la sangre sale del ventrículo izquierdo, a la aorta, a cada uno de los órganos y tejidos del cuerpo y luego regresa a la aurícula derecha. Las arterias, capilares y venas del sistema circulatorio sistémico son los canales a través de los cuales se lleva a cabo esta larga travesía. Una vez en las arterias, la sangre fluye a las arteriolas más pequeñas y luego a los capilares. Mientras está en los capilares, el torrente sanguíneo envía oxígeno y nutrientes a las células del organismo y recoge los materiales de desecho. La sangre vuelve a pasar por los capilares a las vénulas, y luego a las grandes venas hasta que llega a la vena cava. La sangre de la cabeza y de los brazos retorna al corazón a través de la vena cava superior y la sangre de las partes inferiores del cuerpo lo hace a través de la vena cava inferior. Ambas venas cavas envían esta sangre desprovista de oxígeno a la aurícula derecha. Desde aquí la sangre sale para llenar el ventrículo derecho, lista para ser bombeada a la circulación pulmonar para obtener más oxígeno.

En la circulación pulmonar, la sangre con poco oxígeno pero mucho contenido de dióxido de carbono, es bombeada fuera del ventrículo derecho a la arteria pulmonar, que se ramifica en dos direcciones. La rama derecha pasa al pulmón derecho y viceversa. En los pulmones, las ramas se dividen en más capilares. La sangre fluye más lentamente a través de estos vasos diminutos, dando tiempo para que se intercambien los gases entre las paredes de los capilares y los millones de alvéolos, las diminutas bolsas de aire en los pulmones. Durante el proceso denominado oxigenación, el oxígeno es captado por el torrente sanguíneo. El oxígeno se encierra en una molécula llamada hemoglobina en los glóbulos rojos. La sangre recién oxigenada sale de los pulmones a través de las venas pulmonares y regresa al corazón. Ingresa al corazón en la aurícula izquierda, luego llena el ventrículo izquierdo para ser bombeada en la circulación sistémica.

Posibles trastornos del corazón y el aparato circulatorio
Los trastornos del aparato cardiovascular son comunes; más de 64 millones de estadounidenses tienen algún tipo de problema cardíaco. Pero los problemas cardiovasculares no sólo afectan a los ancianos; muchos problemas cardíacos y del aparato circulatorio también afectan a adolescentes.

Los trastornos del corazón y circulatorios se agrupan en dos categorías: congénitos, lo que significa que los problemas estaban ya presentes al nacer y adquiridos, que significa que los problemas se desarrollaron en algún momento durante la infancia o la adolescencia.

Anomalías congénitas del corazón. Las anomalías congénitas del corazón son problemas de corazón que los bebés tienen al nacer. Las anomalías congénitas se producen mientras el bebé se está desarrollando en el útero. Los médicos no siempre saben el motivo por el cual ocurren las anomalías congénitas del corazón; aunque algunas anomalías congénitas del corazón se deben a enfermedades genéticas, la mayoría, no. Un signo común de una anomalía congénita del corazón es el soplo cardíaco. Un soplo cardíaco es un sonido anormal (como un soplido o un ruido de viento fuerte) que se oye al auscultar el corazón. Muchos niños y adolescentes tienen soplos cardíacos, que pueden deberse a anomalías congénitas del corazón u otros trastornos cardíacos.

Arritmia. Las arritmias cardíacas, también denominadas disritmias, o alteraciones del ritmo, son problemas en el ritmo del corazón. Las arritmias pueden deberse a una anomalía congénita del corazón o una persona puede desarrollar este trastorno más tarde. Una arritmia puede hacer que el ritmo cardíaco sea irregular, anormalmente rápido o anormalmente lento. Las arritmias pueden suceder a cualquier edad y es posible descubrirlas cuando un adolescente se realiza un examen médico.

Miocardiopatía. La miocardiopatía es una enfermedad que puede durar mucho tiempo y hace que el músculo del corazón (el miocardio) se debilite. Por lo general, la enfermedad afecta primero a las cámaras inferiores del corazón, los ventrículos, y luego progresa y daña las células musculares e incluso los tejidos que rodean el corazón. Algunos niños y adolescentes con miocardiopatía pueden recibir transplantes cardíacos para tratar la afección.


Enfermedad de la arteria coronaria. La enfermedad de la arteria coronaria (también llamada arteriopatía coronaria) es la enfermedad cardíaca más común en los adultos y es causada por la aterosclerosis. Se forman depósitos de grasa, calcio y células muertas en las paredes interiores que obstruyen las arterias del cuerpo (los vasos sanguíneos que aprovisionan al corazón) e interfieren con el flujo uniforme de sangre. Incluso se puede formar un coágulo sanguíneo que puede provocar un ataque cardíaco. Los ataques cardíacos son muy infrecuentes en niños y adolescentes.

Hipercolesterolemia (colesterol alto). 
El colesterol es una sustancia cerosa que se encuentra en las células, en la sangre y en algunos de los alimentos que ingerimos. El exceso de colesterol en la sangre, conocido también como hipercolesterolemia, es un factor de riesgo importante para la enfermedad cardiaca y puede resultar en un ataque cardíaco.

Hipertensión (Presión sanguínea alta). La hipertensión ocurre cuando una persona tiene presión sanguínea mucho más alta que lo normal. A lo largo del tiempo, puede causar daño al corazón y las arterias y otros órganos. Los adolescentes pueden tener hipertensión, causada por factores genéticos, exceso de peso, dieta, falta de ejercicio y enfermedades como cardiopatía o nefropatía.

Cardiopatía reumática. Los adolescentes que tuvieron una faringitis estreptocócica pueden tener fiebre reumática. Este tipo de infección puede provocar problemas permanentes de corazón, especialmente en niños y adolescentes entre 5 y 15 años de edad. Las personas que han tenido faringitis estreptocócica y recibieron antibióticos de inmediato tienen menos probabilidades de sufrir este problema.

Por lo tanto, ¿qué puedes hacer para impedir que aparezcan los trastornos circulatorios y del corazón? Mucho ejercicio, una dieta nutritiva, mantener un peso sano y controles médicos regulares son las mejores maneras de ayudar a mantener el corazón sano y evitar problemas a largo plazo, como hipertensión, colesterol alto y cardiopatía.

Para bajar la lección pulsa el siguiente enlace:



Lección 32 El aparato digestivo y su funcionamiento

Lección 32 El aparato digestivo y su funcionamiento

El aparato digestivo está formado por el tracto digestivo, una serie de órganos huecos que forman un largo y tortuoso tubo que va de la boca al ano, y otros órganos que ayudan al cuerpo a transformar y absorber los alimentos (ver la figura).

Los órganos que forman el tracto digestivo son la boca, el esófago, el estómago, el intestino delgado, el intestino grueso (también llamado colon), el recto y el ano. El interior de estos órganos huecos está revestido por una membrana llamada mucosa. La mucosa de la boca, el estómago y el intestino delgado contiene glándulas diminutas que producen jugos que contribuyen a la digestión de los alimentos. El tracto digestivo también contiene una capa muscular suave que ayuda a transformar los alimentos y transportarlos a lo largo del tubo.

El aparato digestivo.
Otros dos órganos digestivos “macizos”, el hígado y el páncreas, producen jugos que llegan al intestino a través de pequeños tubos llamados conductos. La vesícula biliar almacena los jugos digestivos del hígado hasta que son necesarios en el intestino. Algunos componentes de los sistemas nervioso y circulatorio también juegan un papel importante en el aparato digestivo.
¿Por qué es importante la digestión?
Cuando comemos alimentos como pan, carne y vegetales, éstos no están en una forma que el cuerpo pueda utilizar para nutrirse. Los alimentos y bebidas que consumimos deben transformarse en moléculas más pequeñas de nutrientes antes de ser absorbidos hacia la sangre y transportados a las células de todo el cuerpo. La digestión es el proceso mediante el cual los alimentos y las bebidas se descomponen en sus partes más pequeñas para que el cuerpo pueda usarlos como fuente de energía, y para formar y alimentar las células.
¿Cómo se digieren los alimentos?
La digestión comprende la mezcla de los alimentos, su paso a través del tracto digestivo y la descomposición química de las moléculas grandes en moléculas más pequeñas. Comienza en la boca, cuando masticamos y comemos, y termina en el intestino delgado.
Paso de los alimentos a través del aparato digestivo
Los órganos grandes y huecos del tracto digestivo poseen una capa muscular que permite que sus paredes se muevan. El movimiento de estas paredes puede impulsar los alimentos y los líquidos, y mezclar el contenido dentro de cada órgano. Los alimentos pasan de un órgano a otro mediante un movimiento muscular que se llama peristaltismo. La acción del peristaltismo se parece a la de una ola del mar moviéndose por el músculo. El músculo del órgano se contrae estrechándose y después mueve lentamente la porción contraída hacia la parte inferior del órgano. Estas ondas alternadas de contracciones y relajaciones empujan los alimentos y los líquidos a través de cada órgano.
El primer movimiento muscular importante ocurre cuando ingerimos alimentos o líquidos. Aunque el ingerir es parte de un proceso voluntario, en cuanto empieza se vuelve involuntaria y pasa a estar bajo el control de los nervios.
Los alimentos que acabamos de ingerir pasan al siguiente órgano que es el esófago, que conecta la garganta con el estómago. En la unión del esófago y el estómago hay una válvula en forma de anillo llamada cardias que cierra el paso entre los dos órganos. Sin embargo, a medida que los alimentos se acercan al anillo cerrado, los músculos que lo rodean se relajan y permiten el paso al estómago.
El estómago debe realizar tres tareas mecánicas. Primero, debe almacenar los alimentos y los líquidos ingeridos. Para ello, el músculo de la parte superior del estómago debe relajarse y aceptar volúmenes grandes de material ingerido. La segunda tarea es mezclar los alimentos, los líquidos y el jugo digestivo producido por el estómago. La acción muscular de la parte inferior del estómago se encarga de esto. La tercera tarea del estómago es vaciar su contenido lentamente en el intestino delgado.
Varios factores afectan el proceso de vaciar el estómago, como el tipo de los alimentos y el grado de actividad muscular del estómago y del intestino delgado. Los carbohidratos, por ejemplo, son los que pasan la menor cantidad de tiempo en el estómago, mientras que las proteínas permanecen más tiempo, y las grasas son las que pasan la mayor cantidad de tiempo. A medida que los alimentos se digieren en el intestino delgado y se disuelven en los jugos del páncreas, el hígado y el intestino, el contenido intestinal se va mezclando y avanzando para facilitar la digestión posterior.
Finalmente, todos los nutrientes digeridos se absorben a través de las paredes intestinales y se transportan a todo el cuerpo. Los productos de desecho de este proceso comprenden partes no digeridas de los alimentos, conocidas como fibra, y células viejas que se han desprendido de la mucosa. Estos materiales son impulsados hacia el colon, donde permanecen hasta que se expulsa la materia fecal durante la deposición.
La producción de los jugos digestivos
Las glándulas digestivas que actúan primero son las glándulas salivares de la boca. La saliva que producen las glándulas contiene una enzima que comienza a digerir el almidón de los alimentos y lo transforma en moléculas más pequeñas. Una enzima es una sustancia que acelera las reacciones químicas en el cuerpo.
El siguiente grupo de glándulas digestivas está en la membrana que tapiza el estómago. Éstas producen ácido y una enzima que digiere las proteínas. Una gruesa capa de moco tapiza la mucosa y evita que la acción acídica del jugo digestivo disuelva el tejido del estómago. En la mayoría de las personas, la mucosa estomacal puede resistir el jugo, a diferencia de los alimentos y de otros tejidos del cuerpo.
Después de que el estómago vierte los alimentos y su jugo en el intestino delgado, los jugos de otros dos órganos se mezclan con los alimentos para continuar el proceso. Uno de esos órganos es el páncreas, cuyo jugo contiene un gran número de enzimas que descomponen los carbohidratos, las grasas y las proteínas de los alimentos. Otras enzimas que participan activamente en el proceso provienen de glándulas en la pared intestinal.
El segundo órgano, el hígado, produce la bilis, otro jugo digestivo. La bilis se almacena en la vesícula biliar entre las comidas. Cuando comemos, la bilis sale de la vesícula por las vías biliares al intestino y se mezcla con las grasas de los alimentos. Los ácidos biliares disuelven las grasas en el contenido acuoso del intestino, casi del mismo modo que los detergentes disuelven la grasa de una sartén. Después de que las grasas se disuelven, las enzimas del páncreas y de la mucosa intestinal las digieren.
Absorción y transporte de los nutrientes
La mayoría de las moléculas digeridas de los alimentos, y el agua y los minerales provenientes de la dieta se absorben a través del intestino delgado. La mucosa del intestino delgado contiene muchos pliegues cubiertos de proyecciones diminutas llamadas vellosidades. Éstas sucesivamente están cubiertas de proyecciones microscópicas llamadas microvellosidades. Estas estructuras crean una superficie amplia a través de la cual se pueden absorber los nutrientes. Hay células especializadas que permiten que los materiales absorbidos atraviesen la mucosa y pasen a la sangre, que los distribuye a otras partes del cuerpo para almacenarlos o para que pasen por otras modificaciones químicas. Esta parte del proceso varía según los diferentes tipos de nutrientes.
Carbohidratos.  Se recomienda que entre el 45 y 65 por ciento de las calorías diarias provengan de carbohidratos. Algunos de los alimentos ricos en carbohidratos son el pan, las papas, los frijoles o guisantes secos, el arroz, la pasta, las frutas y los vegetales. Muchos de estos alimentos contienen al mismo tiempo fécula y fibra.
Los carbohidratos digeribles (fécula y azúcar) se descomponen en moléculas más sencillas por la acción de las enzimas de la saliva, del jugo pancreático y de la mucosa intestinal. La fécula se digiere en dos etapas: primero, una enzima de la saliva y del jugo pancreático lo descompone en moléculas de maltosa; luego una enzima de la mucosa del intestino delgado divide la maltosa en moléculas de glucosa que pueden absorberse en la sangre. La glucosa va por el torrente sanguíneo al hígado, en donde se almacena o se utiliza como fuente de energía para las funciones del cuerpo.
Los azúcares se digieren en un solo paso. Una enzima de la mucosa del intestino delgado digiere la sacarosa, también llamada azúcar común, y la convierte en glucosa y fructosa, cada una de las cuales puede absorberse en el intestino y pasar a la sangre. La leche contiene lactosa, otro tipo de azúcar que se transforma en moléculas fáciles de absorber mediante la acción de otra enzima que se encuentra en la mucosa intestinal.
La fibra no se puede digerir y pasa por el tracto digestivo sin ser transformada por las enzimas. Muchos alimentos contienen fibra soluble e insoluble. La fibra soluble se disuelve fácilmente en agua y adquiere una textura blanda, como un gel, en el intestino. La fibra insoluble, por el contrario, pasa por el intestino casi sin modificación.
Proteína. Los alimentos como carne, huevos y frijoles están formados por moléculas enormes de proteínas que deben ser digeridas por enzimas antes de que se puedan utilizar para producir y reparar los tejidos del cuerpo. Una enzima del jugo gástrico comienza la digestión de las proteínas que comemos. El proceso termina en el intestino delgado. Allí, varias enzimas del jugo pancreático y de la mucosa intestinal descomponen las enormes moléculas en unas mucho más pequeñas, llamadas aminoácidos. Éstos pueden absorberse en el intestino delgado y pasar a la sangre, que los lleva a todas partes del cuerpo para producir las paredes celulares y otros componentes de las células.
Grasa. Las moléculas de grasa son una importante fuente de energía para el cuerpo. El primer paso en la digestión de una grasa como la mantequilla es disolverla en el contenido acuoso del intestino. Los ácidos biliares producidos por el hígado disuelven la grasa en gotitas muy pequeñas y permiten que las enzimas pancreáticas e intestinales descompongan sus grandes moléculas en moléculas más pequeñas. Algunas de éstas son los ácidos grasos y el colesterol. Los ácidos biliares se unen a los ácidos grasos y al colesterol y los ayudan a pasar al interior de las células de la mucosa. En estas células, las moléculas pequeñas vuelven a formar moléculas grandes, la mayoría de las cuales pasan a los vasos linfáticos cercanos al intestino. Estos vasos llevan las grasas modificadas a las venas del tórax y la sangre las transporta hacia los lugares de depósito en distintas partes del cuerpo.
Vitaminas. Otra parte fundamental de los alimentos son las vitaminas, que se absorben en el intestino delgado. Estas sustancias químicas se agrupan en dos clases, según el líquido en el que se disuelven: vitaminas hidrosolubles (todas las vitaminas de complejo B y la vitamina C) y vitaminas liposolubles (las vitaminas A, D E y K). Las vitaminas liposolubles se almacenan en el hígado y en el tejido adiposo del cuerpo, mientras que las vitaminas hidrosolubles no se almacenan fácilmente y su exceso se elimina en la orina.
Agua y sal. La mayoría del material que se absorbe a través del intestino delgado es agua, en la que hay sal disuelta. El agua y la sal vienen de los alimentos y líquidos que consumimos y de los jugos secretados por las glándulas digestivas.
¿Cómo se controla el proceso digestivo?
Reguladores hormonales
Las principales hormonas que controlan las funciones del aparato digestivo se producen y se liberan a través de las células de la mucosa del estómago y del intestino delgado. Estas hormonas se liberan en la sangre del tracto digestivo, regresan al corazón y por las arterias, y de nuevo hacia el aparato digestivo, en donde estimulan la producción de los jugos digestivos y provocan el movimiento de los órganos.
Las principales hormonas que controlan la digestión son la gastrina, la secretina y la colecistocinina.
  • La gastrina hace que el estómago produzca un ácido que disuelve y digiere algunos alimentos. Es necesaria también para el crecimiento celular normal de la mucosa del estómago, el intestino delgado y el colon.
  • La secretina hace que el páncreas secrete un jugo digestivo rico en bicarbonato. El bicarbonato ayuda a neutralizar el contenido ácido del estómago cuando entran en el intestino delgado. Además estimula al estómago para que produzca pepsina, una enzima que digiere las proteínas, y al hígado para que produzca bilis.
  • La colecistocinina (“CCK” en inglés) hace que el páncreas produzca las enzimas del jugo pancreático, y hace que la vesícula biliar se vacíe. También fomenta el crecimiento celular normal del páncreas.
Reguladores nerviosos
Dos clases de nervios controlan la acción del aparato digestivo.
Los nervios extrínsecos (de afuera) llegan a los órganos digestivos desde el cerebro o desde la médula espinal y provocan la liberación de dos sustancias químicas: la acetilcolina y la adrenalina. La acetilcolina hace que los músculos de los órganos digestivos se contraigan con más fuerza y empujen mejor los alimentos y líquidos a través del tracto digestivo. También hace que el estómago y el páncreas produzcan más jugo digestivo. La adrenalina tiene el efecto opuesto, relajando el músculo del estómago y de los intestinos y disminuyendo el flujo de sangre a estos órganos, retardando o deteniendo la digestión.
Los nervios intrínsecos (de adentro) forman una red muy densa incrustada en las paredes del esófago, el estómago, el intestino delgado y el colon. La acción de estos nervios se desencadena cuando las paredes de los órganos huecos se estiran con la presencia de los alimentos. Liberan muchas sustancias diferentes que aceleran o retrasan el movimiento de los alimentos y la producción de jugos en los órganos digestivos.
Juntos, los nervios, las hormonas, la sangre y los órganos del aparato digestivo llevan a cabo las tareas complejas de digerir y absorber nutrientes de los alimentos y los líquidos que se consumen todos los días.


para bajar la lección pulsa el siguiente enlace: